Towards a Seamless Integration of Word Senses into Downstream NLP Applications (2017)
By incorporating a novel disambiguation algorithm into a state-of-the-art classification model, we create a pipeline to integrate sense-level information into downstream NLP applications. We show that a simple disambiguation of the input text can lead to consistent performance improvement on multiple topic categorization and polarity detection datasets, particularly when the fine granularity of the underlying sense inventory is reduced and the document is sufficiently large. Our results suggest that research in sense representation should put special emphasis on real-world evaluations on benchmarks for downstream applications, rather than on artificial tasks such as word similarity. In fact, research has previously shown that **word similarity might not constitute a reliable proxy to measure the performance of word embeddings in downstream applications** [github](
About This Document
File info