Weakly-supervised Relation Extraction by Pattern-enhanced Embedding Learning
Tags:
Extraction de relations de corpus de textes de façon semi-supervisée, dans un contexte où on a peu de données labellisées décrivant les relations. Par exemple, des données labellisées indiquent que le texte "Beijing, capital of China" correspond à la relation entre entités : ("Beijing", "Capital Of", "China), et on voudrait pouvoir extraire les entités et relations pertinentes à partir de texte tel que "Paris, France's capital,..." Le papier décrit une méthode qui combine deux modules, l'un basé sur l'extraction automatique de patterns (par ex "[Head], Capital Of [Tail]") et l'autre sur la "sémantique distributionnelle" (du type "word embeddings"). Ces deux modules collaborent, le premier permettant de créer des instances de relations augmentant la base de connaissance sur lequel entrainer le second, et le second aidant le premier à déterminer des patterns informatifs ("co-entrainement")
About This Document
File info