Home Page TheWebConf 2018
>Bridging natural and artificial intelligence worldwide - [keynotes](https://www2018.thewebconf.org/keynotes/) - [panels](https://www2018.thewebconf.org/plenary-panels/) - [video](http://thewebconf.webcastor.tv)
Related Tags:
 
ExpandDescendants
17 Documents (Long List
  • Improving Word Embedding Compositionality using Lexicographic Definitions (About)
    comment obtenir les meilleures représentations de texte à partir de représentations de mots (word embeddings) ? L'auteur utilise des ressources lexicographiques (wordnet) pour ses tests : l'embedding obtenu pour la définition d'un mot est-il proche de celui du mot ? Le papier s'appuie sur une [thèse du même auteur](/doc/?uri=https%3A%2F%2Fesc.fnwi.uva.nl%2Fthesis%2Fcentraal%2Ffiles%2Ff1554608041.pdf), claire et bien écrite.
    2018-05-10
  • That Makes Sense: Joint Sense Retrofitting from Contextual and Ontological Information (About)
    post-processing method for generating low-dimensional sense embedding. Emploies the ontological and contextual information simultaneously. (Poster at the Web Conf) [Github](https://github.com/y95847frank/Joint-Retrofitting) Calcule des "sense embeddings", en partant de word embeddings pré-calculés (par ex avec word2vec), et de données de type lexicographiques (ex wordnet), en contraignant, pour un sens, la distance entre sense et word embedding. Abstract: > While recent word embedding models demonstrate their abilities to capture syntactic and semantic information, the demand for sense level embedding is getting higher. In this study, we propose a novel joint sense embedding learning model that retrofits the word representation into sense representation from contextual and ontological information. The experiments show the effectiveness and robustness of our model that outperforms previous approaches in four public available benchmark datasets. > Given a trained word embedding and a lexical ontology that contains sense level relationships (e.g., synonym, hypernym, etc.), our model generates new sense vectors via constraining the distance between the sense vector and its word form vector, its sense neighbors and its contextual neighbors [Influenced by](/doc/?uri=https%3A%2F%2Farxiv.org%2Fabs%2F1411.4166) (which post-processes and modifies word vectors to incorporate knowledge from semantic lexicons, while this creates new sense vectors)
    2018-05-10
  • Weakly-supervised Relation Extraction by Pattern-enhanced Embedding Learning (About)
    Extraction de relations de corpus de textes de façon semi-supervisée, dans un contexte où on a peu de données labellisées décrivant les relations. Par exemple, des données labellisées indiquent que le texte "Beijing, capital of China" correspond à la relation entre entités : ("Beijing", "Capital Of", "China), et on voudrait pouvoir extraire les entités et relations pertinentes à partir de texte tel que "Paris, France's capital,..." Le papier décrit une méthode qui combine deux modules, l'un basé sur l'extraction automatique de patterns (par ex "[Head], Capital Of [Tail]") et l'autre sur la "sémantique distributionnelle" (du type "word embeddings"). Ces deux modules collaborent, le premier permettant de créer des instances de relations augmentant la base de connaissance sur lequel entrainer le second, et le second aidant le premier à déterminer des patterns informatifs ("co-entrainement")
    2018-05-10
  • TUTORIAL: Graph-based Text Representations (SLIDES) (About)
    Slides of [tutorial](https://www2018.thewebconf.org/program/tutorials-track/tutorial-213/)
    2018-05-10
  • TUTORIAL: Graph-based Text Representations: Boosting Text Mining, NLP and Information Retrieval with Graphs (About)
    Comment dépasser les limites du modèle Bag Of Word en modélisant le texte sous forme de graphe. Organisé par [Michalis.Vazirgiannis](http://www.lix.polytechnique.fr/Labo/Michalis.Vazirgiannis/) (Polytechnique) et (Fragkiskos D. Malliaros)[http://fragkiskos.me] (CentraleSupelec) [Slides](http://www.lix.polytechnique.fr/~mvazirg/gow_tutorial_webconf_2018.pdf)
    2018-05-10
  • TUTORIAL: Representation Learning on Networks - TheWebConf 2018 (About)
    Network representation learning (NRL): Approaches that automatically learn to encode network structure into low-dimensional embeddings, using techniques based on deep learning and nonlinear dimensionality reduction **Goal of representation learning for networks: efficient task-independant feature learning for ML in networks.** But it's hard. DL toolbox are designed for single sequences or grids (for instance CNN for images, RNN or word2vec are fixed size), but networks are far more complex! from the abstract: > In this tutorial, we will cover key advancements in NRL over the last decade, with an emphasis on fundamental advancements made in the last two years. We will discuss classic matrix factorization-based methods (e.g., Laplacian eigenmaps), random-walk based algorithms (e.g., DeepWalk and node2vec), as well as very recent advancements in graph convolutional networks (GCNs). We will cover methods to embed individual nodes (see [node embeddings](/tag/node_embeddings)) as well as approaches to embed entire (sub)graphs, and in doing so, we will present a unified framework for NRL.
    2018-05-05
  • Smart-MD: Neural Paragraph Retrieval of Medical Topics (About)
    2018-04-28
  • L’inventeur du Web exhorte à réguler l’intelligence artificielle (About)
    2018-04-28
  • HighLife: Higher-arity Fact Harvesting (About)
    **Best paper award** at theWebConf 2018. An approach to harvest higher-arity facts from textual sources. Our method is distantly supervised by seed facts, and uses the fact-pattern duality principle to gather fact candidates with high recall. For high precision, we devise a constraint-based reasoning method to eliminate false candidates. A major novelty is in coping with the difficulty that higher-arity facts are often expressed only partially in texts and strewn across multiple sources. For example, one sentence may refer to a drug, a disease and a group of patients, whereas another sentence talks about the drug, its dosage and the target group without mentioning the disease. Our methods cope well with such partially observed facts, at both pattern-learning and constraint-reasoning stages.
    2018-04-28
  • « Le Web a développé des résistances antibiotiques à la démocratie » (About)
    2018-04-26
  • GraphChain – A Distributed Database with Explicit Semantics and Chained RDF Graphs (About)
    2018-04-25
  • GraphChain (About)
    2018-04-25
  • PROCEEDINGS – The Web Conference in Lyon (About)
    2018-04-23
  • Improving the Compositionality of Word Embeddings (2017) (About)
    (MS thesis, a [paper at TheWebConf 2018](/doc/?uri=https%3A%2F%2Fdoi.org%2F10.1145%2F3178876.3186007)) > This thesis explores a method to find better encodings of meaning a computer can work with. We specifically want to combine encodings of word meanings in such a way that a good encoding of their joint meaning is created. The act of combining multiple representations of meaning into a new representation of meaning is called semantic composition. Analysis of four word embeddings (Word2Vec, GloVe, fastText and Paragram) in terms of their semantic compositionality. A method to tune these embeddings towards better compositionality, using a simple neural network architecture with definitions and lemmas from WordNet. > Since dictionary definitions are semantically similar to their associated lemmas, they are the ideal candidate for our tuning method, as well as evaluating for compositionality. Our architecture allows for the embeddings to be composed using simple arithmetic operations, which makes these embeddings specifically suitable for production applications such as web search and data mining. We also explore more elaborate and involved compositional models, such as recurrent composition and convolutional composition.
    2018-02-13
  • RESEARCH TRACK: Web Content Analysis, Semantics and Knowledge (About)
    [CFP](https://www2018.thewebconf.org/call-for-papers/research-tracks-cfp/web-content-analysis/) > In previous years, ‘content analysis’ and ‘semantic and knowledge’ were in separate track. This year, we combined these tracks to emphasize the close relationship between these topics; **the use of content to curate knowledge and the use of knowledge to guide content analysis and intelligent usage**. Some of the accepted papers: ### [Large-Scale Hierarchical Text Classification with Recursively Regularized Deep Graph-CNN](https://doi.org/10.1145/3178876.3186005) [Hierarchical Text Classification](/tag/nlp_hierarchical_text_classification): Text classification to a hierarchical taxonomy of topics, using graph representation of text, and CNN over this graph Renvoie à ce qui a été vu dans le tutorial "Graph-based Text Representations" from the abstract: > a graph-CNN based deep learning model to first convert texts to graph-of-words, and then use graph convolution operations to convolve the word graph. Graph-of-words representation of texts has the advantage of capturing non-consecutive and long-distance semantics. CNN models have the advantage of learning different level of semantics. To further leverage the hierarchy of labels, we regularize the deep architecture with the dependency among labels Conversion of text to graph: potentially given a single document ### [Weakly-supervised Relation Extraction by Pattern-enhanced Embedding Learning](https://doi.org/10.1145/3178876.3186024 ) Extraction de relations de corpus de textes de façon semi-supervisée, dans un contexte où on a peu de données labellisées décrivant les relations. Par exemple, des données labellisées indique que le texte "Beijing, capital of China" correspond à la relation entre entités : ("Beijing", "Capital Of", "China), et on voudrait pouvoir extraire les entités et relations pertinentes à partir de texte tel que "Paris, France's capital,..." Le papier décrit une méthode qui combine deux modules, l'un basé sur l'extraction automatique de patterns (par ex "[Head], Capital Of [Tail]") et l'autre sur la "sémantique distributionnelle" (du type "word embeddings"). Ces deux modules collaborent, le premier permettant de créer des instances de relations augmentant la base de connaissance sur lequel entrainer le second, et le second aidant le premier à déterminer des patterns informatifs ("co-entrainement") ### [Scalable Instance Reconstruction in Knowledge Bases via Relatedness Affiliated Embedding](https://doi.org/10.1145/3178876.3186017) Knowledge base completion problem: usually, it is formulated as a link prediction problem, but not here. A novel knowledge embedding model ("Joint Modelling and Learning of Relatedness and Embedding") ### [Improving Word Embedding Compositionality using Lexicographic Definitions](https://doi.org/10.1145/3178876.3186007) comment obtenir les meilleures représentations de texte à partir de représentations de mots (word embeddings) ? L'auteur utilise des ressources lexicographiques (wordnet) pour ses tests : l'embedding obtenu pour la définition d'un mot est-il proche de celui du mot ? Le papier s'appuie sur une [thèse du même auteur](https://esc.fnwi.uva.nl/thesis/centraal/files/f1554608041.pdf), claire et bien écrite. ### [CESI: Canonicalizing Open Knowledge Bases using Embeddings and Side Information](https://doi.org/10.1145/3178876.3186030) Amélioration de l'extraction de triplets (nom phrase, property, nom phrase) à partir de texte en calculant des embeddings pour les "nom phrases" (~entités) ### [Short-Text Topic Modeling via Non-negative Matrix Factorization Enriched with Local Word-Context Correlations](https://doi.org/10.1145/3178876.3186009) Topic modeling for short texts, leveraging the word-context semantic correlations in the training ### [Towards Annotating Relational Data on the Web with Language Models](https://doi.org/10.1145/3178876.3186029) ### A paper by [David Blei](/tag/david_blei): (Dynamic Embeddings for Language Evolution)
    2018-01-27
  • TUTORIAL: Representation Learning on Networks - TheWebConf 2018 (About)
    2018-01-27
  • WORKSHOP: BigNet @ WWW 2018 Workshop on Learning Representations for Big Networks (About)
    2018-01-27
Properties